Synthesis of pH-responsive tertiary amine methacrylate polymer brushes and their response to acidic vapour

نویسندگان

  • Lee A. Fielding
  • Steve Edmondson
  • Steven P. Armes
چکیده

Weak polyelectrolyte brushes exhibit pH-responsive swelling behaviour, tuneable surface 10 In this paper, we demonstrate the growth of two weak polybase brushes by surface-initiated atom transfer radical polymerisation (SI-ATRP) using electrostatically adsorbed polyelectrolyte macro-initiators. Poly[2-(diethylamino)ethyl methacrylate] (PDEA) and poly[2-(diisopropylamino)ethyl methacrylate] (PDPA) brushes of 150 and 170 nm thickness respectively were grown within 22 h at 20 °C. Using in situ ellipsometry an acid-induced swelling 15 transition was observed at pH 7.4 for PDEA and pH 6.5 for PDPA, similar to the pKa values reported for the corresponding free polymer chains. The kinetics of brush swelling involves an initially fast regime followed by a subsequent slower regime. Reversible surface energy switching with pH modulation was also demonstrated by contact angle goniometry. Finally, it was demonstrated that PDPA brushes respond to the presence of acidic vapours. On exposure to humid HCl vapour, such brushes become hydrophilic, 20 resulting in water uptake and swelling, producing a visible change in the thin film interference colour.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrophobic effects within the dynamic pH-response of polybasic tertiary amine methacrylate brushes.

The solvation and swelling behaviour of three dialkylaminoethyl methacrylate polymer brushes, of varying hydrophobicity, have been investigated using a combination of in situ ellipsometry and a quartz crystal microbalance with dissipation (QCM-D). At low pH the tertiary amine groups of the three polymers are protonated and all three brushes are significantly solvated and swell by adopting an ex...

متن کامل

Surface Immobilization of pH-Responsive Polymer Brushes on Mesoporous Silica Nanoparticles by Enzyme Mimetic Catalytic ATRP for Controlled Cargo Release

Peroxidase mimetic catalytic atom transfer radical polymerization (ATRP) was first used to install tertiary amine-functionalized polymer brushes on the surface of mesoporous silica nanoparticles (MSNs) in a facile and highly efficient manner. Poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) brushes-grafted MSNs were fabricated by biocompatible deuteroheminβ-Ala-His-Thr-Val-Glu-Lys (DhHP-6)-c...

متن کامل

Spatial Control over Cross-Linking Dictates the pH-Responsive Behavior of Poly(2-(tert-butylamino)ethyl methacrylate) Brushes

Surface-initiated atom transfer radical polymerization (ATRP) of 2-(tert-butylamino)ethyl methacrylate (TBAEMA) produced pH-responsive secondary amine-functionalized polymer brushes with dry thicknesses ranging from 4 to 28 nm, as determined by ellipsometry. At low pH, linear PTBAEMA brushes became protonated and highly swollen; brush collapse occurred when the solution pH was increased to ca. ...

متن کامل

Effect of Three Operating Variables on Degradation of Direct Blue 199 by TiO2 Immobilized into a Polymer surface: Response Surface Methodology

This work aims to study the photodegradation of Direct Blue 199 dye. The investigation was performed using titanium dioxide-based films immobilized on a polymethyl methacrylate (PMMA) polymer, by a promising low coast technique. The characterization of the films by X-ray diffractometry, fourier transform infrared spectroscopy, scanning electron microscopy, UV-Visible transmittance, and fluo...

متن کامل

pH-Sensitive Core-Shell Nanoparticles for Intracellular Drug Delivery

Therapeutics such as proteins, DNA, or siRNA, can only exert their function in the cell cytosol or nucleus. However, most of them are cell membrane impermeable molecules that can only be taken up by cells via endocytosis or phagocytosis. Such drug molecules are thus confined in endolysosomes, where reduced pH and degradative enzymes may destroy them without therapeutic gain. Efficient escape of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017